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Far from Kansas (Graham-Pollak Theorem)

Problem
For n ∈ N, prove that it’s impossible to partition a complete graph
on n + 1 vertices into less than n complete bipartite graphs.
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Far from Kansas (Graham-Pollak Theorem)

Problem
Suppose that 101 players compete in several rounds of a game.

Every round, two disjoint teams are selected from the players to
compete against each other. Suppose each player faces each other
player exactly once. Show that at least 100 rounds occur.

(Note that 100 is achieveable; in the nth round one can make the
nth tallest player face off against every single shorter player.)

Key Idea

For two teams {a, b, c} and {x , y , z}, the expression

(a+b+ c)(x + y + z) = ax +ay +az+bx +by +bz+ cx + cy + cz

simulates all pairs of people that face off against each other!

So if the players are x1, x2, . . . , x101 and every pair faces off once,
terms such as these must sum to

∑
i<j xixj .
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Suppose that 101 players compete in several rounds of a game.
Every round, two disjoint teams are selected from the players to
compete against each other. Suppose each player faces each other
player exactly once. Show that at least 100 rounds occur.∑
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=
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∑
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Take the following system of linear equations: for each round, set
the sum of each team to be equal (like a+ b + c = x + y + z) so
the LHS is ≥ 0, additionally also take

∑
xi = 0 so the RHS is ≤ 0.

Then
∑

x2i is zero, so every xi must be 0. So the system of
equations has one unique solution. There are 101 variables, so
there must be at least 101 equations, and so at least 100 rounds!
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Tricky function (2016 Brazil Olympic Revenge 5)

Problem
Let T be the set of sequences of integers. Suppose there is a
function f : T → Z with these properties:

▶ f is additive, so for any a,b ∈ T , a+ b 7→ f (a) + f (b),

▶ ∀i ∈ N, ei 7→ 0, where ei has i
th term 1 but all other terms 0.

Prove that for any x ∈ T , x 7→ 0.

Observations:

▶ f (0) = f (0+ 0) = f (0) + f (0), so 0 7→ 0

▶ f (a− b) = (f (a− b) + f (b))− f (b) = f (a)− f (b)

▶ ∀c ∈ Z, ca 7→ cf (a)

Every element of T is a sum of multiples of ei !
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Let T be the set of sequences of integers. Suppose there is a
function f : T → Z with these properties:

▶ f is additive, so for any a,b ∈ T , a+ b 7→ f (a) + f (b),

▶ ∀i ∈ N, ei 7→ 0, where ei has i
th term 1 but all other terms 0.

Prove that for any x ∈ T , x 7→ 0.

(3, 1, 4, 1, 5, . . . ) 7→ f ((3, 0, 0, 0, 0, . . . )) + f ((0, 1, 0, 0, 0, . . . ))

+ f ((0, 0, 4, 0, 0, . . . )) + f ((0, 0, 0, 1, 0 . . . ))

+ f ((0, 0, 0, 0, 5, . . . )) + · · ·
= 0 + 0 + 0 + 0 + 0 + · · · = 0

So aren’t we done?
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⌊0.9⌋ = 0

⌊0.99⌋ = 0

⌊0.999⌋ = 0

...

⌊0.999 . . . ⌋ = 0

Wait no! ⌊0.999 . . . ⌋ = ⌊1⌋ = 1!
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Cannot induct infinitely! Only true if finitely many nonzero terms!
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function f : T → Z with these properties:

▶ f is additive, so for any a,b ∈ T , a+ b 7→ f (a) + f (b),

▶ ∀i ∈ N, ei 7→ 0, where ei has i
th term 1 but all other terms 0.

Prove that for any x ∈ T , x 7→ 0.

So if we cannot prove for all x ∈ T yet, maybe we should try to
find more x that map to 0.

Let’s try x being the powers of 2.

f ((1, 2, 4, 8, 16, . . . )) = f ((0, 2, 4, 8, 16, . . . )) = 2f ((0, 1, 2, 4, 8, . . . ))

This becomes 4f ((0, 0, 1, 2, 4, . . . )), 8f ((0, 0, 0, 1, 2, . . . )), etc!
But if f (x) is divisible by every power of two, there’s only one
thing it can be. . . zero!
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But if f (x) is divisible by every power of two, there’s only one
thing it can be. . . zero!
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Prove that for any x ∈ T , x 7→ 0.

For any sequence x with increasing gcd, f (x) must be divisible by
larger and larger numbers, so must be 0.

What about x in general?

x = (x1, x2, x3, . . .)

We will write x as a sum of sequences we now know map to zero,
by using the powers of 2 and 3.
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Tricky function (2016 Brazil Olympic Revenge 5)

Problem
Let T be the set of sequences of integers. Suppose there is a
function f : T → Z with these properties:

▶ f is additive, so for any a,b ∈ T , a+ b 7→ f (a) + f (b),

▶ ∀i ∈ N, ei 7→ 0, where ei has i
th term 1 but all other terms 0.

Prove that for any x ∈ T , x 7→ 0.

Because 2i and 3i are relatively prime, by Bezout’s lemma, xi can
be written in the form ai2

i + bi3
i . Then,

f (x) = f ((a12
1 + b13

1, a22
2 + b23

2, a32
3 + b33

3, . . . ))

= f ((a12
1, a22

2, a32
3, . . . )) + f ((b13

1, b23
2, b33

3, . . . ))

= 0 + 0 = 0,

as desired!
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2022-gon of unit area, what’s the median value1 of their distance?

1 1

1meaning the number such that 50% of the time, the distance is less.
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